266 research outputs found

    Доглядайте шкіру ступень!

    Get PDF
    There is discussion whether medicines can be authorized on the market based on evidence from surrogate endpoints. We assessed opinions of different stakeholders on this topic.We conducted an online questionnaire that targeted various stakeholder groups (regulatory agencies, pharmaceutical industry, academia, relevant public sector organisations) and medical specialties (cardiology or nephrology vs. other). Participants were enrolled through purposeful sampling. We inquired for conditions under which surrogate endpoints can be used, the validity of various cardio-renal biomarkers and new approaches for biomarker use.Participants agreed that surrogate endpoints can be used when the surrogate is scientifically valid (5-point Likert response format, mean score: 4.3, SD: 0.9) or when there is an unmet clinical need (mean score: 3.8, SD: 1.2). Industry participants agreed to a greater extent than regulators and academics. However, out of four proposed surrogates (blood pressure (BP), HbA1c, albuminuria, CRP) for cardiovascular outcomes or end-stage renal disease, only use of BP for cardiovascular outcomes was deemed moderately accurate (mean: 3.6, SD: 1.1). Specialists in cardiology or nephrology tended to be more positive about the use of surrogate endpoints.Stakeholders in drug development do not oppose to the use of surrogate endpoints in drug marketing authorization, but most surrogates are not considered valid. To solve this impasse, increased efforts are required to validate surrogate endpoints and to explore alternative ways to use them

    Moderate dietary sodium restriction added to angiotensin converting enzyme inhibition compared with dual blockade in lowering proteinuria and blood pressure: randomised controlled trial

    Get PDF
    Objective To compare the effects on proteinuria and blood pressure of addition of dietary sodium restriction or angiotensin receptor blockade at maximum dose, or their combination, in patients with non-diabetic nephropathy receiving background treatment with angiotensin converting enzyme (ACE) inhibition at maximum dose

    Epidemiology of the diabetes-cardio-renal spectrum:a cross-sectional report of 1.4 million adults

    Get PDF
    Background Type-2 diabetes (T2D), chronic kidney disease, and heart failure (HF) share epidemiological and pathophysiological features. Although their prevalence was described, there is limited contemporary, high-resolution, epidemiological data regarding the overlap among them. We aimed to describe the epidemiological intersections between T2D, HF, and kidney dysfunction in an entire database, overall and by age and sex. Methods This is a cross-sectional analysis of adults >= 25 years, registered in 2019 at Maccabi Healthcare Services, a large healthcare maintenance organization in Israel. Collected data included sex, age, presence of T2D or HF, and last estimated glomerular filtration rate (eGFR) in the past two years. Subjects with T2D, HF, or eGFR = 55 years old. eGFR measurements were available in 74.7% of the participants and in over 97% of those with T2D or HF. eGFR availability increased in older age groups. There were 140,636 (10.1%) patients with T2D, 54,187 (3.9%) with eGFR < 60 mL/min/1.73m(2), and 11,605 (0.84%) with HF. Overall, 12.6% had at least one condition within the DCR spectrum, 2.0% had at least two, and 0.23% had all three. Cardiorenal syndrome (both HF and eGFR < 60 mL/min/1.73m(2)) was prevalent in 0.40% of the entire population and in 2.3% of those with T2D. In patients with both HF and T2D, 55.2% had eGFR < 60 mL/min/1.73m(2) and 15.8% had eGFR < 30 mL/min/1.73m(2). Amongst those within the DCR spectrum, T2D was prominent in younger participants, but was gradually replaced by HF and eGFR < 60 mL/min/1.73m(2) with increasing age. The congruence between all three conditions increased with age. Conclusions This large, broad-based study provides a contemporary, high-resolution prevalence of the DCR spectrum and its components. The results highlight differences in dominance and degree of congruence between T2D, HF, and kidney dysfunction across ages

    Improving clinical trial efficiency by biomarker-guided patient selection

    Get PDF
    Background: In many therapeutic areas, individual patient markers have been identified that are associated with differential treatment response. These markers include both baseline characteristics, as well as short-term changes following treatment. Using such predictive markers to select subjects for inclusion in randomized clinical trials could potentially result in more targeted studies and reduce the number of subjects to recruit. Methods: This study compared three trial designs on the sample size needed to establish treatment efficacy across a range of realistic scenarios. A conventional parallel group design served as the point of reference, while the alternative designs selected subjects on either a baseline characteristic or an early improvement after a short active run-in phase. Data were generated using a model that characterized the effect of treatment on survival as a combination of a primary effect, an interaction with a baseline marker and/or an early marker improvement. A representative scenario derived from empirical data was also evaluated. Results: Simulations showed that an active run-in design could substantially reduce the number of subjects to recruit when improvement during active run-in was a reliable predictor of differential treatment response. In this case, the baseline selection design was also more efficient than the parallel group design, but less efficient than the active run-in design with an equally restricted population. For most scenarios, however, the advantage of the baseline selection design was limited. Conclusions: An active run-in design could substantially reduce the number of subjects to recruit in a randomized clinical trial. However, just as with the baseline selection design, generalizability of results may be limited and implementation could be difficult

    High-sensitive troponin T and N-terminal pro-B type natriuretic peptide are associated with cardiovascular events despite the cross-sectional association with albuminuria and glomerular filtration rate

    Get PDF
    It has been suggested that troponins and natriuretic peptides can be falsely elevated in subjects with impaired kidney function because of decreased renal clearance. The value of these biomarkers in subjects with impaired kidney function has therefore been debated. We tested in a population-based cohort study, first, whether high-sensitive troponin T (hsTnT) and N-terminal pro-B-type natriuretic peptide (NT-pro-BNP) levels are cross-sectionally associated with the estimated glomerular filtration rate (eGFR) and albuminuria, and secondly, whether these markers are associated with cardiovascular outcome, independent of eGFR, albuminuria and conventional cardiovascular risk factors. We included 8121 subjects from the PREVEND study with both values of hsTnT and NT-pro-BNP available. High-sensitive troponin T 0.01 g/L and NT-pro-BNP 125 ng/L were defined as elevated. We first performed linear regression analyses with hsTnT and NT-pro-BNP as dependent variables. Next, we performed Cox-regression analyses, studying the associations of hsTnT and NT-pro-BNP with incident cardiovascular events. Of our cohort, 6.7 had an elevated hsTnT and 12.2 an elevated NT-pro-BNP. Also, the estimated glomerular filtration rate, albuminuria, and ECG-assessed ischaemia and left ventricular hypertrophy were all significantly associated with hsTnT and NT-pro-BNP in the linear regression analyses. Both hsTnT and NT-pro-BNP appeared associated with cardiovascular events, and these associations remained significant after adjustment for eGFR, albuminuria, age, gender and conventional cardiovascular risk factors (P 0.03 and P 0.001, respectively). Only a few subjects with markedly reduced renal function were included. The results presented are therefore mainly valid for a population with mildly impaired renal function. These data indicate that a finding of an increased hsTnT or NT-pro-BNP in subjects with chronic kidney disease stages 1/3 should be taken seriously as a prognostic marker for a worse cardiovascular outcome and not be discarded as merely a reflection of decreased renal clearance

    Qué hacer con las separatas

    Get PDF
    Sección: Pequeñas soluciones para grandes problemasLas separatas son unidades de informacion muy útiles y de gran valor para los investigadores pero que, a menudo, resultan una rémora pues su materia no encaja bien en nuestra biblioteca.N

    Development and Validation of a Prediction Model for Future Estimated Glomerular Filtration Rate in People With Type 2 Diabetes and Chronic Kidney Disease

    Get PDF
    Importance: Type 2 diabetes increases the risk of progressive diabetic kidney disease, but reliable prediction tools that can be used in clinical practice and aid in patients' understanding of disease progression are currently lacking. Objective: To develop and externally validate a model to predict future trajectories in estimated glomerular filtration rate (eGFR) in adults with type 2 diabetes and chronic kidney disease using data from 3 European multinational cohorts. Design, Setting, and Participants: This prognostic study used baseline and follow-up information collected between February 2010 and December 2019 from 3 prospective multinational cohort studies: PROVALID (Prospective Cohort Study in Patients with Type 2 Diabetes Mellitus for Validation of Biomarkers), GCKD (German Chronic Kidney Disease), and DIACORE (Diabetes Cohorte). A total of 4637 adult participants (aged 18-75 years) with type 2 diabetes and mildly to moderately impaired kidney function (baseline eGFR of ≥30 mL/min/1.73 m2) were included. Data were analyzed between June 30, 2021, and January 31, 2023. Main Outcomes and Measures: Thirteen variables readily available from routine clinical care visits (age, sex, body mass index; smoking status; hemoglobin A1c[mmol/mol and percentage]; hemoglobin, and serum cholesterol levels; mean arterial pressure, urinary albumin-creatinine ratio, and intake of glucose-lowering, blood-pressure lowering, or lipid-lowering medication) were selected as predictors. Repeated eGFR measurements at baseline and follow-up visits were used as the outcome. A linear mixed-effects model for repeated eGFR measurements at study entry up to the last recorded follow-up visit (up to 5 years after baseline) was fit and externally validated. Results: Among 4637 adults with type 2 diabetes and chronic kidney disease (mean [SD] age at baseline, 63.5 [9.1] years; 2680 men [57.8%]; all of White race), 3323 participants from the PROVALID and GCKD studies (mean [SD] age at baseline, 63.2 [9.3] years; 1864 men [56.1%]) were included in the model development cohort, and 1314 participants from the DIACORE study (mean [SD] age at baseline, 64.5 [8.3] years; 816 men [62.1%]) were included in the external validation cohort, with a mean (SD) follow-up of 5.0 (0.6) years. Updating the random coefficient estimates with baseline eGFR values yielded improved predictive performance, which was particularly evident in the visual inspection of the calibration curve (calibration slope at 5 years: 1.09; 95% CI, 1.04-1.15). The prediction model had good discrimination in the validation cohort, with the lowest C statistic at 5 years after baseline (0.79; 95% CI, 0.77-0.80). The model also had predictive accuracy, with an R2ranging from 0.70 (95% CI, 0.63-0.76) at year 1 to 0.58 (95% CI, 0.53-0.63) at year 5. Conclusions and Relevance: In this prognostic study, a reliable prediction model was developed and externally validated; the robust model was well calibrated and capable of predicting kidney function decline up to 5 years after baseline. The results and prediction model are publicly available in an accompanying web-based application, which may open the way for improved prediction of individual eGFR trajectories and disease progression.</p
    corecore